Human mannose-binding protein inhibits infection of HeLa cells by Chlamydia trachomatis.

نویسندگان

  • A F Swanson
  • R A Ezekowitz
  • A Lee
  • C C Kuo
چکیده

The role that collectin (mannose-binding protein) may play in the host's defense against chlamydial infection was investigated. Recombinant human mannose-binding protein was used in the inhibition of cell culture infection by Chlamydia trachomatis (C/TW-3/OT, E/UW-5/Cx, and L2/434/Bu), Chlamydia pneumoniae (AR-39), and Chlamydia psittaci (6BC). Mannose-binding protein (MBP) inhibited infection of all chlamydial strains by at least 50% at 0.098 microg/ml for TW-3 and UW-5, and at 6.25 microg/ml for 434, AR-39, and 6BC. The ability of MBP to inhibit infection with strain L2 was not affected by supplementation with complement or addition of an L2-specific neutralizing monoclonal antibody. Enzyme-linked immunosorbent assay and dot blot analyses showed MBP bound to the surface of the organism to exert inhibition, which appeared to block the attachment of radiolabeled organisms to HeLa cells. Immunoblotting and affinity chromatography indicated that MBP binds to the 40-kDa glycoprotein (the major outer membrane protein) on the outer surface of the chlamydial elementary body. Hapten inhibition assays with monosaccharides and defined oligosaccharides showed that the inhibitory effects of MBP were abrogated by mannose or high-mannose type oligomannose-oligosaccharide. The latter carbohydrate is the ligand of the 40-kDa glycoprotein of C. trachomatis L2, which is known to mediate attachment, suggesting that the MBP binds to high mannose moieties on the surface of chlamydial organisms. These results suggest that MBP plays a role in first-line host defense against chlamydial infection in humans.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Surfactant protein D is present in the human female reproductive tract and inhibits Chlamydia trachomatis infection.

Surfactant protein D (SP-D) is a lung collectin involved in innate host defence mechanisms in the lung. SP-D is also expressed at other mucosal sites throughout the human body. In the present study, we show that SP-D mRNA and protein are expressed in the human female reproductive tract. SP-D protein was localized in the apical portion of the reproductive epithelial cells. We also demonstrate th...

متن کامل

An N-linked high-mannose type oligosaccharide, expressed at the major outer membrane protein of Chlamydia trachomatis, mediates attachment and infectivity of the microorganism to HeLa cells.

The structure of the carbohydrate of the 40-kD major outer membrane component of Chlamydia trachomatis and its role in defining infectivity of the organism were investigated. The oligosaccharides were released from the glycoprotein by N-glycanase digestion, coupled to a 2-aminopyridyl residue, and subjected to two-dimensional sugar mapping technique. The major fractions consisted of "high-manno...

متن کامل

Further characterization of an outer membrane protein of Chlamydia trachomatis with cytadherence properties.

To further characterize the chlamydial cytadhesin (CCA), we have examined it for saturability of binding to HeLa cells that were grown as monolayers and in suspension. The CCA exhibited specific cytadherence properties of binding to HeLa cells that appeared to be saturable. The CCA showed a substantial decrease in binding to trypsin-treated HeLa cells in suspension. This finding, together with ...

متن کامل

Chlamydia pneumoniae uses the mannose 6-phosphate/insulin-like growth factor 2 receptor for infection of endothelial cells.

Several mechanisms for attachment and entry of Chlamydia have been proposed. We previously determined that the major outer membrane protein of Chlamydia trachomatis is glycosylated with a high-mannose oligosaccharide, and a similar structure inhibited the attachment and infectivity of C. trachomatis in epithelial cells. Because insulin-like growth factor 2 (IGF2) was shown to enhance the infect...

متن کامل

Chlamydia interfere with an interaction between the mannose-6-phosphate receptor and sorting nexins to counteract host restriction

Chlamydia trachomatis is an obligate intracellular pathogen that resides in a membrane-bound compartment, the inclusion. The bacteria secrete a unique class of proteins, Incs, which insert into the inclusion membrane and modulate the host-bacterium interface. We previously reported that IncE binds specifically to the Sorting Nexin 5 Phox domain (SNX5-PX) and disrupts retromer trafficking. Here,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Infection and immunity

دوره 66 4  شماره 

صفحات  -

تاریخ انتشار 1998